Non–trivial harmonic spinors on generic algebraic surfaces
نویسندگان
چکیده
منابع مشابه
Non–trivial Harmonic Spinors on Generic Algebraic Surfaces
For every closed Riemannian spin manifold its Dirac operator is a selfadjoint linear elliptic operator acting on sections of the spinor bundle. Hitchin [3] proved that the dimension of its kernel, the space of harmonic spinors, only depends on the conformal class of the Riemannian metric, and that it varies with the conformal class. However, the variation is not understood. Investigating this v...
متن کاملHarmonic Spinors on Homogeneous Spaces
Let G be a compact, semi-simple Lie group and H a maximal rank reductive subgroup. The irreducible representations of G can be constructed as spaces of harmonic spinors with respect to a Dirac operator on the homogeneous space G/H twisted by bundles associated to the irreducible, possibly projective, representations of H. Here, we give a quick proof of this result, computing the index and kerne...
متن کاملAlmost harmonic spinors
We show that any closed spin manifold not diffeomorphic to the two-sphere admits a sequence of volume-one-Riemannian metrics for which the smallest non-zero Dirac eigenvalue tends to zero. As an application, we compare the Dirac spectrum with the conformal volume. Spineurs presque harmoniques Résumé. Nous montrons que, sur toute variété spinorielle compacte sans bord non difféomorphe à la sphèr...
متن کاملRepresentation Theoretic Harmonic Spinors for Coherent Families
Coherent continuation π2 of a representation π1 of a semisimple Lie algebra arises by tensoring π1 with a finite dimensional representation F and projecting it to the eigenspace of a particular infinitesimal character. Some relations exist between the spaces of harmonic spinors (involving Kostant’s cubic Dirac operator and the usual Dirac operator) with coefficients in the three modules. For th...
متن کاملGauge theory, calibrated geometry and harmonic spinors
We establish connections between different gauge-theoretical problems in high and low dimensions. In particular we show that higher dimensional asd equations on total spaces of spinor bundles over low dimensional manifolds can be interpreted as Taubes-Pidstrygach’s generalisation of Seiberg-Witten equations. By collapsing each fibre of the spinor bundle to a point, we relate solutions of Taubes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1996
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-96-03772-0